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This paper is concerned with tests based on nearest neighbour distances for the goodness of fit 
problem in multidimensions a la Bickel and Brieman (1983). We argue that the nearest neighbour 
distances provide a natural extension to multidimensions, of the idea of "spacings", which have been 
extensively used on the real line. The asymptotic distribution theory for a general class of these test 
statistics is studied both under the null hypothesis as well as under an appropriately converging 
sequence of alternatives. The results are used to obtain the Pitman asymptotic relative efficiencies of 
such statistics and to discuss optimal tests in this class. 

KEYWORDS: Goodness of fit in multi-dimensions, nearest neighbour distances, Pitman asymptotic 
relative efficiencies. 

Let X, ,  . . . , X,, be independent and identically distributed random variables with 
a common density function f ( x )  on R ~ ,  i.e., each X, is a d-dimensional vector 
( d  2 1). The basic goodness of fit problem is to test 

Ho:F=I;b 

where F, is a ;specified distribution function (d.f.) on R ~ .  Often a preliminary test 
of this type on model-checking precedes all the rest of statistical inference. 

On the real line, i.e. for d = 1, broadly speaking there are three general 
approaches to testing the goodness of fit hypothesis. 

(a) x2 methods: Fix cells or class intervals and compare the observed 
frequencies in each cell with what is expected under H,. This classical procedure 
goes back to Pearson (1900). For a recent review, see Moore and Spurill (1976). 

(b) Empirical d . 5  methods: Compute the empirical d.f. 

1 
F,(x) = - (number of Xi x )  n 

and check how far this is from the postulated one by using a distance d ( - ,  .). 

' Research supported In part by ONR Grant number N00014-93-1-0174. 
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272 S.  ZHOU and S .  R .  JAMMALAMADAKA 

Reject Hu if d(F,, F,) > c,. For example, Kolmogorov-Smirnov test: 

See for instance, Shorack and Wellner (1986). 
( c )  Spacings methods: This can be considered as the "dual" approach to X 2 .  

We ~ L X  a frequency, say m, (in m-step spacings) and consider the length of the 
interval formed by X,'s which contains m successive observations. More precisely, 
we order 

and define 1-step spacings: 

m-step spacings (overlapping): 

or m-step spacings (disjoint or non-overlapping): 

There is a vast literature on goodness of fit tests based on spacings. Pyke (1965) 
is a good review. Among others are Kuo and Rao (1981), Hall (1986), 
Jammalamadaka, Zhou and Tiwari (1989), etc. The general idea is to compare 
the null probability measure of the coverages, i.e. F,((X,,,, Xo+,,]), with its 
expected value under H,,, namely, l ln .  

There are, of course, many other procedures such as probability plots, moment 
techniques etc besides several adhoc methods. An important reference in this 
connection is the handbook by D'Agostino and Stephens (1986). See also 
Andrews et a[.  (1973) and Koziol (1986) in connection with testing multivariate 
normality. 

In multidimensional spaces, the search for goodness of fit tests that are general 
and practical, similar to those mentioned above for one dimension, remains an 
open problem. Although the x2 methods are still available in theory, there are 
difficulties associated with the arbitrariness of choosing the classes or cells. The 
distribution-free nature of the procedures of Kolmogorov-Smirnov type tests 
does not extend to higher dimensions. Since there is no unique ordering (and 
order statistics) in multi-dimensional spades, we cannot define spacings, as in one 
dimension. However, noting that the general idea of spacings is to compare 
F,((X(,,, X(,+,,]), with their expected value l l n  under H,, we may extend this 
concept to multidimensions by choosing appropriate coverages to replace the 
interval (X,,, X(,+,,]. One immediate choice is the "nearest-neighbour" ball 
B(X,, R,), which has been studied by Bickel and Breiman (1983), where 
B(x, r )  = {y : lly - xll < r )  is the ball of radius r around x with the usual 
Euclidean norm II.II on R ~ ,  and R, is the nearest-neighbour distance from XI 
defined by 
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GOODNESS OF FIT TESTS 273 

In one dimension, B(Xi, R,) reduces to the smaller of the two 1-step spacing 
intervals surrounding Xi. Let 

denote the co,verage probability of B(Xi, Ri), where f (x) is the density under H,. 
It is interesting to note that for any fixed x, F,(B(x, r,)) where q = llX, - X I ] ,  are 
i.i.d. with a uniform distribution on (0, 1). Moreover, P(& > a)  = (1 - a)"-', 
independent of the null distribution F,,  and E [ E ]  = l l n  under H,, same as the 
expected valu~e of 1-step spacings in one dimension. We consider the class of test 
statistics based on 4 of the form 

where h is a real-valued function defined on [0, m) and E, denotes the expectation 
under H,. Since the computation of the coverage probabilities poses a 
numerical problem, one may consider the following approximation for E ,  
proposed by Elickel and Breiman (1983): 

where V(r) de.notes the volume of B(0, r). Note that Ri is small for large n and so 
f (x) = f (X , )  for x E B(Xi, Ri), assuming f (x) is continuous. Thus for large n, 

17 = F,(B(Xi, R,)) = 1 f (x) dx = f (X,)V(R,) = Di. 
B(X,.RJ 

We will aiso consider tests based on {D,) ,  of the form 

In the following sections, we study the limiting behaviour of both T, and T,* 
under the null hypothesis as well as under a sequence of alternatives converging 
to H,. Although T,* is simpler in computation than T,, we focus primarily on T, 
in our study since it is of independent theoretical interest as the more legitimate 
extension of the concept of spacings. Also, one can numerically evaluate using a 
computer, the { F ; )  and hence T,. 

Our results show that the limiting distribution of T, (and T,*) is independent of 
the null distribution F, and thus provide asymptotically distribution-free tests 
(which of course is not surprising in view of the results of Bickel and Breiman 
(1983) about D,). More specifically, T, converges in distribution to N(O, 2) under 
H, and to N(p, 2) under a sequence of alternatives converging to Ho at a rate of 
n-"4, for d < 8. The test statistic here, does not depend on the alternatives. Thus 
an "optimal" test among the class of tests T,,(h) provides an omnibus test of 
uniformity, irrespective of the alternatives. 

Bickel and Breiman (1983) study tests based on {D,) .  It should be remarked 
that while they derive the asymptotic behaviour of the empirical process based on 
{ D l )  under the null hypothesis, they do not consider the limiting distribution 
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274 S. ZHOU and S. R. JAMMALAMADAKA 

under a sequence of close alternatives. Schilling (1983) studies the limiting 
distribution of a weighted version of the empirical process based on {D,) under a 
sequence of alternatives converging to H,, at a rate of n-'I2. His results show that 
the unweighted process C:=, I(nD, 5 t) has no power against these alternatives. 
This does not however pinpoint that the correct rate at which the alternatives 
should converge is n-'I4 for the unweighted case, nor study tests and their relative 
efficiencies for these alternatives. Schilling (1983) shows that by choosing an 
appropriate weight function w(x) based on the alternatives, the weighted version 
I;=, w(nD,)l(nD, 5 t )  can detect alternatives converging at the rate of nP1l2. In 
comparison with this, the test statistic T, is less powerful when the alternatives are 
specified (on which the appropriate weight function w(x) depends). But most 
frequently, the alternatives are not given in a goodness of fit problem so that the 
correct weighting cannot be determined. In contrast, our tests T, and T,) are 
independent of the alternatives and they are uniformly powerful against the 
general alternatives which are at a distance of n-lI4 from H,. In fact, when the 
alternatives are known, one can always use the likelihood ratio test to achieve the 
maximum power. It is interesting to note that these results parallel those for 
spacings tests (see Holst and Rao (1981)). 

The spacings tests as well as the current procedures based on { E }  have the 
same local power properties as comparable chi-square procedures and in fact, 
better in many instances (See Jammalamadaka and Tiwari (1987)). By 
comparable chi-square procedures we mean the following: because of the duality 
we alluded to earlier (i.e. fixing cells and comparing the frequencies as in 
chi-square, versus, fixing frequencies and comparing the lengths/volumes of the 
cells as in spacingslnearest neighbor methods) the present spacingslnearest 
neighbour methods should be compared to chi-square procedures with expected 
frequency of one. Such chi-square tests are asymptotically normal and are not as 
efficient as the spacings tests. See Jammalamadaka and Tiwari (1987). Similar 
comparisons are also possible between the usual chi-square test with a finite 
number of cells and the spacings tests (specifically the Greenwood statistic which 
is the sum of squares of spacings) where the length of the step m is a fixed finite 
fraction of the sample size. In this latter case, spacings tests also have an 
asymptotic chi-square distribution and one can handle the estimated parameter 
problems also as was done in Wells et al. (1992). The results of this investigation 
will appear elsewhere. To summarize, spacings type tests can meet or beat the 
Chi-square procedures, when appropriate comparisons are made. 

In Section 2, we will state the results about the limiting distributions of T, and 
T,). Since the details of the proofs are quite technical and lengthy, although they 
are either basically routine or similar to those of Bickel and Breiman (1983), we 
provide only an outline of the proofs in Section 3, to keep the paper short. 

2. RESULTS 

Proposition 1 gives the limiting process of the empirical process based on F;.  
Let {E,,(t) : 0 5 t 5 m} be the normalized empirical process of {nF; : i = 
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GOODNESS OF FIT TESTS 

1 " 
&,(t) = - [ I (nc  F; t) - P(nE 5 t)]. 

fi i = l  

PROPOSITION 1. If the following assumption on the density f ( x )  under Ho holds: 

(Al l  
(i) {f > 0) = {x E Rd ; f (x) > 0) is open in R d ,  and 

(ii) f is uniformly bounded and continuous on {f > 01, 

then under H,, the process {E,(t) : 0 5 t 5 m) converges weakly to a Gaussian 
process {g(t) : 0 5 t 5 m) with mean zero and covariance function 

where 

and r , ,  r2 are given by V(r,) = t, V(r2) = s. 

The proof of Proposition 1 is based on the results of Bickel and Breiman (1983) 
on D,. The main argument is that the empirical process of {nE) is close to that of 
{nDi) so that they have the same weak limit. As a result of Proposition 1, we can 
obtain the limiting distribution of T, under the null hypothesis based on the fact 
that T, can be represented as a functional of the process {E,(t)). The results are 
stated in the following Proposition 2 and its corollary which provides simpler 
sufficient conditions: 

PROPOSITION 2. Assume that (A l )  holds and a real-valued function h on [0, m) 

(possibly infinity at 0,) satisfies assumption: 

(A2) 
(i) h(t) is of bounded variation on any closed interval in (0, m); 

(ii) I I," (te -'I  'I2 dh (t) 1 < w. 

Then 

under H,, where a2(h) = I," I," K(s, t) dh(s) dh(t) and K(s, t) is as in Proposition 1. 

COROLLARY . Suppose the following assumption on h(.) holds: 

(A3) 
(i) h is absolutely continuous in (0, m) and its derivative h '  is bounded on any 

closed interval in (0, m), 
(ii) t"h2(t) is bounded for some a< 1, 

(iii) e-IYh2(t) is bounded for some P < 1. 

Then T,% N(O, d ( h ) )  under H,. 
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276 S.  ZHOU and S. R. JAMMALAMADAKA 

Some typical examples of h satisfying (A3) include h(t) = tY(y > -1/2), 
h(t) = log t and h(t) = It - cl, and cover most statistics in the literature. The 
following two theorems will show that the empirical process {En(t)) and the test 
statistic Tn will converge to a nondegenerate limit under a sequence of 
alternatives converging to the null hypothesis at a rate of n-'I4, which will enable 
us to obtain the asymptotic relative efficiencies for Tn. We consider the limiting 
distribution under the following sequence of alternatives: 

HI,  :Xi -f(x) + T Z - ~ / ~ ~ ( X ) .  (2.1) 

where I l(x) dx = 0. Such a sequence of alternatives was studied in one dimension 
by a number of authors. See for example, Jammalamadaka and Tiwari (1987). 

THEOREM 3. If (Al )  and the following (A4) and (A5) hold: 

(A4) f is twice continuously differentiable on {f > 0);  
(A5) 1 is supported in a compact subset of {f > 0) and is twice continuously 
differentiable on {f > O), 

then under HI,, 

weakly, for dimension d < 8, where E(t) is as defined in Proposition 1. 

THEOREM 4. Assume (Al )  and (A3)-(A5) hold, d < 8. Then 

under {H,,), where 

and K(s, t) is as in Proposition 1. 
The basic idea for the proof of Theorem 3 is to use a Taylor expansion on the 

mean function of the process, while Theorem 4 follows from Theorem 3 just as 
Proposition 2 follows from Proposition 1, although the details are a bit 
complicated. 

 from Theorem 4, it can be shown that the Pitman Asymptotic Relative 
Efficiency (ARE) of Tn(hl) relative to Tn(h2) for two different functions hl(-) and 
h2(.) is 

where 

p2(h) Lb ( t  - t 2 2 )  d l )  
Eff (T, (h)) = - - 

*(h) - 6 6 K(s, t) dh(s) dh(t) 
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GOODNESS OF FIT TESTS 277 

is called the "efficacy" of Tn(h). As a result, the optimal statistic (in Pitman 
sense) in the: class of Tn(h) is the one with the function h that maximizes 

This optimization problem, we find, is quite nontrivial but can be reduced to 
standard procedure of solving integral equation. To see this, suppose that g(t) is 
solution of the following integral equation: 

.-rn 

Then, by considering I," I," K(s, t)g(s)hl(t) ds dt as the inner product of g and h '  
and applying the Cauchy-Schwartz inequality we obtain 

with equality if h f ( t )  =g(t).  Thus the optimal function h(.) is given by 
h(t) = $hg(s)~ ds where g(s) is the solution of the integral equation (2.2). Note 
that e(h) depends only on h, independent of the alternatives as well as the null 
hypothesis. 

The corresponding results for T,* are summarized in the following theorem: 

THEOREM 5. (a) I f f  ( x )  satisfies (A l )  and h is a function of bounded variation on 
[O, m), then 

under H,, where 02(h) is the same as in Proposition 2. 
(b) If the conditions in part (a), as well as (A4) and (A5) hold, then 

under {HI,} given by (2.1), where p(h) and d ( h )  are as in Theorem 4. 

Remark. The condition on function h in Theorem 5 is stronger than (A2) and 
many useful functions such as polynomials and logarithms do  not have bounded 
variation on [0, a ) .  However, if a function satisfies part (i) of (A2) (i.e., of 
bounded variation on closed intervals in (0, a)), a truncation can turn into a 
function of bounded variation on [0, a )  and still keep T,* little changed. For 
example, if we are interested in using function h(t) = t2, say, then its truncated 
version 

hft) = t2Z(t <A)  +A'z(~ > A), O<A < a ,  

would have bounded variation on [0, m). Since h(t) = h(t) for t E [O,  A] ,  and A 
can be chosen large enough so that T,"(K) is virtually unchanged from T,*(h). 
This should provide an approximation good enough for all practical purposes. 
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278 S. ZHOU and S. R.  JAMMALAMADAKA 

3. OUTLINE O F  THE PROOFS 

Proof of Proposition 1. The proof is based on the results of Bickel and Breiman 
(1983) which show that the normalized empirical process of {nD, : i  = 1, . . . , n ) ,  
say qn(t) ,  converges weakly to E(t). Since the tightness of {En( t ) )  can be proved 
in a way very similar to that of {q,( t)) ,  we need only to verify that 
Var(En(t) - qn(t)+ 0,  which establishes that these two processes converge to the 
same limit, namely E ( t ) .  

First we cite an inequality provided by Bickel and Breiman (1983): Let g,(x, r )  
and h,(x, r )  be two bounded functions defined on Rd x [0, w). Put 

hl = h,(X,,  nUdR,)  and g2 = gn(X2,  nUdR,). Then 3 constant M < m such that 

ICov(h1, g2)l S M  IlgnII Ihll + E Ih,FlI) V n  > 4. (3.1) 

Let E > 0. Note that nF,(B(x, n-lIdr))-+ f ( x ) v ( r )  as n + cl-., hence by Lebesgue's 
Dominated Convergence Theorem (LDCT) 

p(nUdR, > M )  = [l - &(B(x,  n - l l d ~ ) ) ] n - l f  ( x )  dx- e - f ( x ) v (M' f ( x )  dx. I 
The last integral tends to zero as M -+ m. it follows that 3M and N such that 

P ( ~ " ~ R ~  > M )  < E V n  > N. (3.2) 

Next, since P ( n 4  > t )  = (1 - tin)"-', 
P(nFl 5 t, nD, > t, n U d ~ ,  5 M )  

Given X I  = x and nF, = u < t, put 6 = ( t  - u ) / 2 V ( M )  > 0. Then by (Al) ,  for 
z E { f  > 0 ) )  If ( X  + n-lldz) - f (x)I < 6 V Z  E B(0, M )  and large n. Hence when 
nlJdR1 5 M, 

u=nF,=n  1 f ( x  + y )  dy 2 ( f  ( x )  - G)nV(R,) 2 nDl - 6 V ( M )  
Ily ll<Ri 

so that nDl 5 u + GV(M) = ( u  + t ) / 2  < t. Consequently the conditional probabil- 
ity in (3.3) equals zero for large n and so P(nFl 5 t, nD, > t ,  n l l d ~ l  5 M)-+ 0 as 
n+ cl-. by (3.3) and LDCT. This together with (3.2) proves that P ( n 4  5 t ,  nD, > 
t)+ 0. It follows that 

E[l(nFl > t )  - I(nDl > t)I2 
= P ( n 4  > t )  + P(nDl > t )  - 2P(nFl > t, nD, > t )  
= P(nF, > t )  + P(nDl > t )  - 2[P(nDl > t )  - P ( n 4  5 t ,  nDl > t ) ]  

+e-'+ e- ' -  2eV'= 0. (3.4) 
Now take g,(x, r )  = h,(x, r )  = I{nF,(B(x, n-%)) 5 t )  - I { f  ( x ) V ( r )  5 t )  and use 
(3.1) and (3.4), we obtain 

n Cov[I(nF, 5 t )  - I(nDl 5 t ) ,  I(n& 5 t )  - l(nD2 5 t ) ]  
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GOODNESS OF FIT TESTS 279 

where M1 is a constant. Here we used the fact that ~[E(F:)]'" = n[2/n(n + 1)1"~ 
is bounded. Finally 

Var(7, (t) - En(t)) 5 E[I(n4  5 t) - I (nD15 t) J2 

t (n - 1) Cov[I(nFl 5 t) - I(nD1 5 t), I(nF2 5 t) - I(nD2 5 t)]+ 0. 

Proof of Proposition 2: The proof uses a method described in Shorack and 
Wellner (1986, pp. 737-739). First note that due to Proposition 1, we can assume 
that llEn - EllO9 = supt IE,(t) - E(t)l%0. We will show that Var(E,(t)) 5 Mte-' for 
some constant M. Let E > 0. Then 

var[[ & W  W ) ]  = [[ ~[E~(s )E , ( t ) l  d W  dh(t) 

2 6 2 

s [[ { V a r ( ~ ~ ( t ) ) ) " ~  dh(r)] r M [ [  (te-')1'2 dh(t )] < E' 
0 

for some 6 > 13 by (A2). Thus 

Similarly 

~ ( l l & ( t ) d h ( t )  I 2 E ) < E for some large*. 

The same argument will also give 

for some 6 > 0 and A < m. Finally, because 

The last stochastic integral has a N(O, a2(h)) distribution by a standard argument 
on a Gaussian process (c.f. Sharack and Wellner (1986), pp. 42-43). It remains to 
show that Var(E,(t)) s Mte-'Vt r 0 and n 1 4 .  Since Var(En(t)) = 0 for t 2 n, we 
need only to consider t < n. By (3.1) 3M, such that Vn r 4, 

Because 

and 
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280 S .  ZHOU and S. R. JAMMALAMADAKA 

we have 

Var(En(t)) = Var[I(nFl 5 t)] + (n - 1) Cov[I(nF, 5 t), I(n& 5 t)] 

5 P ( n 4  t) + Ml{P(nF, 5 t) + E[nF,I(nF, 5 t)]) 
5 (1 + 2Ml)t 5 (1 + 2 ~ , ) e t e - '  Vt E [0, I]. (3.8) 

Similarly 

Var(En(t)) = Var[I(nF, > t)] + (n - 1) Cov[l(nFl > t), I(n& > t)] 
5 P ( n 4  > t) + M2{P(nFl > t) + E[nFll(n4 > t)]) (3.9) 

for some constant MI. For t E (1, n ] ,  

and 

n - 1 in ( * 

( ) ( ;)" E[nFII(nF, > t)] = - u 1-- d u = t  1 - -  + 1-- 
n 

Combining (3.9) through (3.11) yields 

Var(En(t)) 5 [e + M2(2e + l)]te-' Wt E [I ,  n) 

which together with (3.8) completes the proof. 

Proof of the corollary of Proposition 2: Clearly (A3)-(i) implies (A2)-(i). So we 
need only to show that (ii)-(iii) of (A3) imply (ii) of (A2). Now 

(A3)-(ii) j t-'h2(t) = t-'If "'t"h2(t) Ct-'I+"' (for some constant C) 
j t-lf2 Ih(t)l 5 fc f-112(1+") (a< l )  

Thus (A2)-(ii) holds 
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GOODNESS OF FIT TESTS 28 1 

To prove 'Theorem 3 and Theorem 4, we define 

S, = S, ( x )  = inf { r  : n&(B(x,  r ) )  = t )  (3.12) 

for n > t and x E { f  > 0 ) .  Clearly S, is well-defined because n F ( B ( x ,  r ) )  is 
continuous in r. It is easy to see that 

(a) n F ( B ( x ,  S,)) = t V x  E { f  > 0 )  and n > t ;  
(b) S, = ~(n-lid) and V(S,) = O ( n P 1 ) .  

Proof of Theorem 3: Let P, and Po denote the probability measures under HI,  
and H, respectively. Write 

En(t) = E?)(t) + [En(t) - E?)(t)l+ mn( t )  

where 

1 " 
t? ) ( t )  = - [ I { ~ F ? )  5 t )  - ~ , l { n F ~ " '  5 t ) ]  fi i=1 

1 " 
.&(t) =- [ I { n E <  t }  - E,I{nF; 5 t ) ]  fi i=l  

and 

m,(t) = fi [P,(nF, > t )  - Po(nF, > t ) ]  

It is clear that Ep)(t)+ E(t) weakly under HI,. Moreover, E,[E,(~) - c?)(t)] = 0 
and it can be shown that 

var(E,(t) - E?)(t)) + o 
in a way similar to the proof of Var(En(t )  - q,(t))-+ 0 in Theorem 1 with F p )  in 
place of D, (the only difference is in the proof of P(nFl t ,  nF(,") > t)+ 0 ,  but this 
is actually easier because IF(,") - FII 5 n - ' I 4 ~ &  for some constant C by (A5)). It 
follows that E,(t) - Ep)( t )  5 0 and so it suffices to show that 

as n + a. Let S, be as in (3.12). Then 

= I  ( 1  - F,(B(x, S,)) - n-li4L)"- ' f  ( x )  dx 
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282 S. ZHOU and S. R.  JAMMALAMADAKA 

n - 1  

where L = ~ , 1 , 1 ,  ,, l(x + y ) dy. W e  also have Po(nFl > I )  = (1  - f ) . Thus 

=I1 +I2,  say. 

A Taylor expansion shows that i f  an = 0 ( 1 ) ,  then 

and so 
(1 - n-514an)n-1 - - e ~ p { - n - ~ ~ ~ a ~  + O(n-'I4)) 

= 1 - n-'I4a, + O(n-'I4) + ;[ - n-'I4an + ~ ( n - ~ ' ~ ) ] ~  + 0(nP3l4)  
- - 1 - - l M a n  + in -112 a ,  2 + o(n-'I2). (3.15) 

BY (A5) 
d 

n~ = 1 nl(x + y )  dy = 
~ ~ ~ ~ ~ < ~ n  

1 l i ~ l i < S ,  " [ l ( x ) + ~ l ~ ( x ) y ~ + ~ ( / ~ y / ~ ~ ) ] d y  i =  1 

= nl(x)V(Sn) + nO(St)V(Sn) (3.16) 

where ( y , ,  . . . , yd) = y  and I:= dlldx,, which shows n L  = O(1) and so by (3.15), 

) n - 1 = ( l - n - 5 1 4  1 - n-1/4--- 

1 - t ln 1 - t ln 

- 
n L  1 - 1 - n-l14- + - n -  nL + ~ ( n - " ~ ) .  (3.17) 

1 - t l n  2 1 - t ln 

Thus by (3.14), 

- - - n 4  1 - :)n-2(nL)f ( x )  dx + A / ( I  - :)n-3(nL)2f(x)  dx + o ( 1 )  (318)  
2 

Similar to (3.16) we can obtain 

t = nF,(B(x, S.)) = 1 nf ( x  + y )  dy = nf(x)V(S, ,)  + nO(S:)v(Sn).  (3.19) 
I IY l l - 3 7  

Combining (3.16) and (3.19) yields n L  = t l (x)/ f  ( x )  + 0(nP2ld )  and so by (3.18) 
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GOODNESS OF FIT TESTS 

Note that l(x) dx = 0. Thus for d < 8, as n + a), 

Similarly for d < 8, 

Finally (3.13) follows from (3.14) together with (3.20) and (3.21). 

Proof of Theorem 4: The proof of Theorem 4 is similar to that of Proposition 2. 
The idea is to find a function M(t) such that Varn(En(t))5 M(t) and 
$ [M(t)]li2 dhi(t) < m, where Var, denotes the variance under HI,. Again by using 
(3.1) we obtain 

for some constant MI, where P, and En denote the probability measure and the 
expectation under HI, respectively. Define F(")(A) = $, f,(x) dx for A c R ~ .  By 
(A5), (11 I Cf for some constant C, hence IF(")(A) - F,(A)I 5 n- l i4CF, (~)  and 

I~F(")(B(x,  S,)) - tl = lnF(")(B(x, S,)) - nF,(B(x, S,))I 5 nP1l4Ct. 

Consequently 

Let p < 1 satisfy (A3) and PI E (P ,  1). Then by (3.24), 3Nl such that Vn > Nl 

( ) V t a O  P, (nF,>t )s  1 --PI-  (3.25) 

and 
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284 S. ZHOU and S. R. JAMMALAMADAKA 

Combining (3.25) and (3.26) with (3.23) we can see that 3M2 and N2 such that 

var,  (g,, (t)) 5 ~ , t e - ~ "  Vt 2 1 and n > N2. (3.27) 

In a similar way we can argue that 3N3 such that Vn > N,, 

and E,,[nF,l(nF, 5 t ) ]  5 tP,,(nF, 5 t) 5 t. Hence by (3.22), there is a constant M3 
such that Var,,(E,,(t)) 5 M3t Vt E [0, 11. This together with (3.27) shows the 
existence of the constants M, and N such that Var,(E,,(t)) 5 ~ , t e - ~ " V t  r 0 and 
n > N. Finally taking M(t) = ~ , t e - ~ ' '  completes the proof. 

Proof of Theorem 5: Due to the condition on h, Part (a) follows immediately 
from the weak convergence of q,(t) (the empirical process of {nD,) to $(t) under 
H,. As for Part (b), it is sufficient to show that the process q,,(t) converges weakly 
to the same limit as that of &(t) under {H,,) ,  which can be proved by using 
arguments similar to those in the proof of Theorem 3, except that the S,, in 
Theorem 3 should be replaced by [tlnf ( x ) ] ' l d .  
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